Fractional Keller–Segel equation: Global well-posedness and finite time blow-up

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Well-posedness, Scattering and Blow-up for the Energy Critical Focusing Non-linear Wave Equation

In this paper we consider the energy critical non-linear wave equation    ∂ t u−∆u = ± |u| 4 N−2 u (x, t) ∈ R × R u ∣∣ t=0 = u0 ∈ Ḣ1(R ) ∂tu ∣∣ t=0 = u1 ∈ L(R ) Here the − sign corresponds to the defocusing problem, while the + sign corresponds to the focusing problem. The theory of the local Cauchy problem (CP) for this equation was developed in many papers, see for instance [26], [9], [2...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case

We establish global existence, scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ norm less than those of the ground state in R× R, d ≥ 5.

متن کامل

Finite Time Blow up for a Navier-stokes like Equation

We consider an equation similar to the Navier-Stokes equation. We show that there is initial data that exists in every Triebel-Lizorkin or Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the solution is in no Triebel-Lizorkin or Besov space (and hence in no Lebesgue or Sobolev space). The purpose is to show the limitations of the so called semigroup m...

متن کامل

Global Well-posedness and Scattering for Derivative Schrödinger Equation

In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2019

ISSN: 1539-6746,1945-0796

DOI: 10.4310/cms.2019.v17.n8.a1